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Purpose of SWAN 
 
SWAN is an analytical tool used to find biological patterns between samples.  Its primary purpose is to test 
for pathway alterations.  A typical analysis will include a set of experimental samples compared to control 
samples, both of which have whole-genome gene information available (such as copy number alterations 
or RNA changes).   
 
The SWAN App was designed to make interpretation and analysis of copy-number alteration (CNA) data 
obtained by The Cancer Genome Atlas (TCGA) or custom data accessible to those without a bioinformatics 
background.  The SWAN Shiny App can run on low- or high-powered computers and is intended for ease 
of use.  However, an R package version of SWAN is also available for bioinformaticians which is additionally 
programmed to enable multi-core analysis on supercomputers and loop across samples. 
 
Since each pathway consists of many genes, the algorithm also prioritizes which genes most impact tumor 
biology for each set of tumors analyzed.  It does that within a single pathway, and also cumulatively adds 
these effects across all studied pathways to ascertain if a gene can influence many biological pathways.  
This enables a targeted pursuit of genes and proteins for molecular biology studies. 

Data from each pathway can be downloaded per sample for further analysis.   This is useful for clustering 
or survival analyses.  
 
There are two main SWAN programs: 

 Pan-pathway SWAN.  This discovery-based method will test hundreds or thousands of molecular 
pathways for alterations within your data.  It will highlight the most suppressed and most elevated 
pathways, and which annotations (usually genes) most contributed to this change. 

 Single-pathway SWAN.  Once you discover a pathway of interest for your study, this program 
expands the data available to you to allow for a deeper-dive into the genes involved in creating 
the pathway alteration. 

Both come in an online App form, which is free for academic users. The pan-pathway version is available 
as open-source R package functions for bioinformaticians and as a downloadable Shiny App. 
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Introduction 
 

Origin of SWAN: Copy-Number Alteration Analyses of Human Tumors 
 
To preface the rationale behind the design of SWAN, it is important to note how cancerous tumors have 
changed their landscape of copy-number from the normal two-copies per gene.  Somatic copy-number 
alterations (CNAs) by definition are changes in the dosage of genes from what a patient has in their normal 
genome.  Most genes are affected by CNAs resulting from entire chromosome arm gains or losses.  
Because most chromosome arms contain essential genes, homozygous losses are extremely rare, and 
occur in <1% of gene CNAs.  These homozygous deletions are “focal”; that is, they occur on some smaller 
portion of a chromosome arm.  Similarly, many extra copies of a chromosome are detrimental to cell 
division, so having twice the dosage of a gene is rare, and <5% in any tumor type.  These genes are often 
isolated on “double-minute” chromosomes – broken chromosomes which can replicate and segregate 
independently of the normal genome, or on extra chromosomal DNA.   
 
Hence, >90% of the gene-level CNAs within a tumor are monoallelic; that is, either the loss of one allele 
(while one allele remains) or the gain of a single allele (to three alleles total).  The scale of this is much 
higher than single-nucleotide variants / indel mutations in tumors.  While most tumors have SNVs in <1% 
of genes, tumors range from 10-70% of their genome altered by CNAs.  Clearly, it is important to 
understand how these CNAs alter biology in tumors.  That is the purpose of SWAN and the Atlas, here. 
 
While epigenetic states can alter the expression of genes on these CNAs, and often does, there are clear 
trends toward a correlation of RNA expression and even protein expression with CNA changes.  For 
references, please read PMID:27165746 (shows 93% of expressed genes on a CNA heterozygous loss are 
reduced in expression) and PMID:27372738 (shows 90% correlation of mRNA to protein). 
 
One significant caveat is that CNAs can often be formed through a whole-genome duplication event first, 
followed by losses and gains.  Hence, instead of 2N normal copy number, the “normal” copy number for 
this duplicated genome cell is 4N.  Thus a “heterozygous loss” would be a 2N copy number and a 
“heterozygous gain” would be 6N in copy number.   While more intuitively complex, studies in yeast and 
plants suggest these duplicated genomes still function similar to normal 2N genomes in terms of pathway 
flux, enabling a relative determination of suppressed or enhanced pathways across tumors.   
 

SWAN Uses: Not Limited to Cancer 
 
While cancer was the initial reason for developing SWAN, diploid organisms follow evolutionary biology 
which is highly relevant to SWAN.  For example, sibling differences are often due to differences in single 
gene alleles.  While siblings contain similarities, there are usually clear differences as well.  These 
differences are the core selective fodder for Darwinian evolution.  While other systems were not involved 
in the design of SWAN, we did test neurodegeneration RNA data and saw expected neuronal pathways as 
the top hits. Evaluation of datasets involving organismal aging in mice also showed previously published 
pathways were hits, along with additional novel hits. Just like other pathway analysis tools, we expect 
SWAN to help discover novel biology in many model systems.  Custom uploads enable users to query any 
organism or annotation, as long as users can supply pathway set(s) and interaction data to build networks.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=27165746
https://www.ncbi.nlm.nih.gov/pubmed/?term=27372738


The SWAN Algorithm 
 
Concept. Biological data can often contain great levels of noise. To obtain significant differences in highly 
heterogeneous data, pathway analysis may be used. To further prioritize which genes most drive pathway 
differences, SWAN build networks within each pathway.  Networks are scored based on (1) how many 
interactions occur within the pathway with individual genes (higher score), (2) if a gene has 
haploinsufficiency data associated with it (higher score), and (3) the value of the gene within each sample 
(may be positive, negative, or zero). 
 
Controls. To achieve significance, the observed data must be compared to a control.  There are two 
options for controls: (1) a permuted background control, which performs an in silico randomization of all 
gene-level data for each network, and (2) a user-supplied control, which should be in the same scale and 
format as the experimental sample data. In the case of a user supplied control, permuted background 
networks must still be generated and scored to provide estimates of shifts expected by chance. Controls 
are the foundation of SWAN, and the reason why many background permutations are recommended for 
most analyses. 
 

SWAN Inputs 
 
The basics: SWAN requires gene-level data on a consistent scale, such as log2 intensity values or integer 
copy numbers (with normal ploidy set at zero). Example data in the correct format can be downloaded 
using the online App. Columns represent samples, and rows represent genes or other annotations. 
 
The details: SWAN has many input criteria which can aid calculations of specific problems. Each input 
variable is briefly described below: 
 
 Main inputs (necessary for all SWAN analyses) 
 
 Type of analysis  Select from TCGA demo data or Custom to use your own data 
 
 Experiment data file Tab or comma delimited file containing your gene-level data as rows 
      and samples as columns. Data should be normalized to a -2 to +2 range 
 
 Control data file (Optional) upload similar to experiment data file, for control samples 
 
 Pathway set  Choose from pre-installed pathway sets. If needed, custom pathway 
     sets may be uploaded in the “other options” section 
 
 Other options (for customizing analysis) 
 
 Control permutations This is the “background” calculation performed to determine what may 
    be found by chance. A value of 200 is recommended for confident  
    results, and 1,000 for publication-quality analysis 
 
  
 Significance threshold  FDR threshold for what is considered as “significant”. Can be set as 1 to  
    include all resulting pathways 



 P-value setting  Toggle between network-level P-value configuration and gene-level P- 
     value configuration. Gene-level is less restrictive but may risk false  
    positives, whereas network-level is more restrictive and may risk false 
     negatives 
 
 Score interactions SWAN will prioritize genes based on how may proteins within a pathway 
    a gene product interacts with 
 
 Haploinsufficiency SWAN will prioritize genes based on known haploinsufficiency and  
    triploproficiency data from mouse and yeast homologs 
 
 Custom gene scores SWAN will prioritize genes based on this upload. This may be useful to  
    coordinate SWAN analysis with other phenotypic data 
 
 Score mutations Similar to “custom gene scores”, this allows a file to be uploaded 
    containing data marking which genes are mutant. These genes will 
    be prioritized by the multiplication factor also set here 
 
 Score RNA  This may be used with or without mutation scoring. It also prioritizes 
    genes based on a custom file upload. Data should be appropriately  
    scaled to the -2 to +2 range. There is an option to add RNA data to the  
    analysis only when consistent with main experimental & control file(s) 
 
 Value cutoffs  For data which is not in -2, -1, 0 ,1, 2 scale but rather continuous, this is  
    a necessary setting to enable SWAN to mark which genes are changed  
    to monoallelic or higher levels. A common value set for CNAs is +/- 0.2  
    for monoallelic alterations, and +/- 1.0 for multiple allele alterations. 
 
 Pathway size  Some pathway sets may include uninformative small pathways (<10 
    genes) or uninformative giant pathways (>200 genes) which complicate 
    interpretation of hit genes. The defaults here limit pathways to those  
    enabling downstream analysis, but larger or smaller pathways may be 
    included by changing this threshold 
 
 Ignore gene(s)  A common experiment is knocking down or knocking out a gene. In this 
    case, analysis of all pathways containing that gene will be biased by the  
    loss of that gene. To ignore the manipulated gene, enter the gene  
    symbol here. Biological changes which result from loss of the gene will 
    then be analyzed. 
 
 Custom files  Custom pathway or interaction files may be uploaded. This enables an 
    analysis of organisms outside of SWAN defaults, or for something other 
    than BioGRID protein-protein interactions to be used in network 
    creation 
  
  
 



SWAN Data Groomer 
 
Since SWAN will only run on specifically formatted data, the Data Groomer was released to enable users 
to automatically adapt existing data for the format SWAN requires.  
 
The Data Groomer can map *.seg files onto genes (and convert genome coordinates depending on how 
your *.seg file was generated). If using gene-sample pair format, it can log2 normalize your data, remove 
genes with zero data, find Gene Symbols from other database identifiers, and scale your data to the -2 to 
+2 range SWAN is optimized for. If you have DNA, RNA, and protein data for the same samples, simply run 
the Data Groomer for each data type one at a time. 
 
Instructions can be found at the Data Groomer App webpage: 
https://delaney.shinyapps.io/SWAN_Data_Groomer/ 
 
Please note that consulting a statistician will almost always be a better option than an automated tool like 
the Data Groomer.  

 

SWAN Outputs 
 
Pan-pathway SWAN.  
You can download some of the spreadsheets which generate the statistical data using these buttons: 

 
 

Results summary Downloads the table containing SWAN pathway analysis 
 
Pathway per sample  Downloads SWAN shifts in tabular format for every sample, enabling 

hierarchical and other clustering methods and other downstream 
    analyses 
 
 Interactome  Downloads a cumulative SWAN shift per gene across all pathways 
    analyzed. The genes with the highest magnitude may alter the most  
    biology across samples, although cumulative magnitude is biased by 

how many pathways each gene appears in. 
 
Single-pathway SWAN. 
Graphical outputs are described below in the Example / Tutorial. 
 

  

https://delaney.shinyapps.io/SWAN_Data_Groomer/


An example of CNAs altering a tumor suppressor pathway 
 
Autophagy gene locations and Ovarian Cancer CNA distribution: 

 
Red indicates CNAs predominantly are gains/amplifications in the OV cohort, blue indicates CNAs are 
predominantly losses within the cohort.  Clearly, most autophagy initiation genes lie on chromosome 
regions selected for losses, although ATG3 does not. 
 

SWAN Single-Pathway App  

SWAN Single-Pathway App Overview 
Once the Pan-pathway SWAN test has been run, the Single-Pathway App may delve further into the 
data.  This is intended to improve upon the pan-pathway overview in the following ways: 

 Data for all pathway genes can be tabulated 

 Graphical outputs of the pathway’s network can be generated and plotted 

 Graphical outputs of each sample’s annotations can be plotted 

 Pathway genes can be plotted along chromosomes, to identify chromosome arms which may be 
most important to altering the pathway 

 Enables querying of a single pathway of interest, rather than all pathways, if a hypothesis exists 

 Can quickly incorporate other data for pathway of interest (RNA, mutation, differing controls or 
subsets of experimental data) 

 
  



SWAN Single-Pathway App Example and Outputs 
SWAN Impact Network: 

 
This interactive network highlights which annotations most influenced the overall network score.  The 
color key is as follows, according to sample averages: 

Nodes  
Dark blue Highest quartile of negatively scored annotations 

Blue 3rd quartile of negatively scored annotations 
Light blue 2nd quartile of negatively scored annotations 

Gray Between light blue and light red scoring levels 
Light red 2nd quartile of positively scored annotations 

Red 3rd quartile of positively scored annotations 
Dark red Highest quartile of positively scored annotations 

  

Edges  
Blue Both nodes are negatively scored 
Gray Both nodes are neither negatively nor positively scored 
Red Both nodes are positively scored 

Purple Nodes are antagonistic; one is negatively scored, the other is positively scored 
 
  



SWAN Circos Network  

 
 
Each chromosome is labeled as the outside ring, with the inner red and blue rings marking the frequency 
of gains or losses on each region of the chromosome, respectively.  Connections inside the Circos plot 
(“ribbons”) represent protein-protein interactions.  The thicker the line, the more that gene influenced 
the SWAN score for the pathway’s network.  Gene labels are included if a connected ribbon score is 
beyond one standard deviation from a zero change value.   

  



An example of CNAs altering an oncogenic pathway 
 
MAPK pathway gene locations and Ovarian Cancer CNA distribution: 

 
While these examples demonstrate the core concept behind SWAN analysis, the reality of tumor genomics 
and pathway alterations are complex.  Most pathways will have some genes enhanced in copy number 
within a given pathway but also some genes with lower dosage.  The balance between these changes are 
determined and used as an estimate for changes in pathway flux.  In addition, pathways can be 
“dysregulated”: that is, some genes are amplified and some are deleted, resulting in altered pathway 
function.  In this case, the score for the pathway is not statistically significant despite a change in biological 
effect, since neither hypothesis for simple pathway activation or inactivation are upheld by the data. 
 
In addition to the chromosomal data incorporated from individual tumors, pathway networks are built 
from protein-protein interactions originating from the BioGRID database (https://thebiogrid.org/).  Genes 
encoding proteins which are highly interactive within the pathway’s network will be scored as more 
“influential”; that is, since they interact with many genes within the pathway, each interaction is scored 
individually as part of the pathway’s overall scores.  Since a gene with many interactions will have many 
contributions to the score, their influence in the network is larger than a gene without interactions.   
 
Finally, these pathway network scores layer in one more biologically relevant datum.  We incorporate a 
multiplier for a gene if its homologue is known to be haploinsufficient in yeast or mice.  This is because 
most of the genetics changes in CNAs in tumors are single allele changes, thus those genes which influence 
function with a single allele change are also scored higher. 
 
These calculations in SWAN are put forth in more detail in the original publication (pending), along with 
quality control specifications for how we settled on these factors within the pathway calculation.  In short, 



these help prioritize known tumor suppressors and oncogenes, giving a higher likelihood that other genes 
the algorithm prioritizes will also be tumor suppressors or oncogenes. 
 
SWAN improves on Dr. Delaney’s previous HAPTRIG algorithm with the addition of the following changes: 

 Development of a Shiny App interface to test a pathway set, rather than a single queried pathway 

 Comparison of a control permuted background to another control permuted background to 
establish a genuine network topology normalization and improve true positives 

 Use of an iterative majority vote method to determine pathway suppression or enhancement 
hypothesis formation, thereby stabilizing p values and reducing necessary randomizations to 
achieve stable results 

 Inclusion of pan-pathway interactome testing to find highest-impact annotations (genes) which 
influence many suppressed or enhanced pathways 

 Ability to test experimental samples to control samples, rather than only experimental samples 
to permuted background control 

 Ability to input a user-designed pathway set 

 Ability to input a user-designed scoring matrix to prioritize genes (eg, known causal genes in 
phenotype data sets) 

 Ability to overlay other data, such as RNA and/or mutation, to perform an integrative analysis 

 Use of lapply and matrix manipulations to speed calculations 100 fold 

 Parallelization options for bioinformatic use on multi-core computers  

 Extensive testing across the TCGA to determine optimal cutoffs 

 Inclusion of companion functions and Apps to groom the data for input into SWAN 

  



SWAN Pan-Pathway App 
Examination of Ovarian Cancer: An example / tutorial 

Volcano plot of altered CNA pathways 
When we first were building this algorithm, we used the Autophagy pathway as an example, since it was 
the strongest suppressed CNA pathway in serous ovarian cancer.  Autophagy is a process which is normally 
regulated through changes in flux.  It is a cellular recycling pathway, so higher flux means more molecules 
are recycled by autophagy, and lower flux means the cell is unable to completely recycle a normal amount 
of molecules.  Select “Ovarian Cancer (OV)” and “KEGG” and click “View Results” to bring up this screen: 
 

 
 
Hover the mouse over the data points to bring up a small window describing the magnitude of suppression 
and the FDR q value of significance.  The magnitude describes the percent shift from the result expected 
from permuting the data 10,000 times and generating pathway-level network scores for each 
permutation.  It is the shift from the minimum network score as calculated for the hypothesis that the 
pathway is haploinsufficient.  Triploproficient pathway magnitude changes are similarly calculated as the 
shift from the maximum network score from 10,000 permuted data networks.  The significance is yielded 
by first calculating the median Wilcoxon rank-sum p value from the actual tumor networks relative to the 
permuted tumor networks and then using a Benjamini Hochberg FDR correction for multiple hypothesis 
testing.  Bonferroni testing was also used, and can be seen in the downloadable pathway summary. 
 



Pan-pathway summary of the most influential genes 
 
Some genes will influence the pathway scores across many different pathways.  Since many pathways are 
affected, these may be more biologically relevant tumor suppressor and oncogenes to target for a 
particular cancer type.  Sometimes these changes are simple to interpret, such as the amplification of MYC 
in many ovarian cancer tumors: 
 

 
 
Since MYC is overexpressed in many samples and affects many pathways, it is highlighted in deep red in 
the above bar graph.  However, some genes may also have a strong influence on a pathway if other genes 
which regulate the given gene are consistently upregulated across tumors, even if that particular gene 
itself is not always upregulated (this is one advantage of network analysis).  For example, in ovarian cancer, 
many genes which interact with EGFR are upregulated in a variety of pathways, leading to EGFR appearing 
on this graph, but in a more transparent shade of red.  This may mean that pathway inhibition of EGFR-
related pathways may still reduce proliferation in ovarian cancer, even if inhibition of EGFR itself may not.   
 

Mutation Plots (TCGA only) 
The next two graphs simply show the distribution of CNAs and mutations (as defined by single-nucleotide 
variants and short indels).  Each “sample”, represented by a single dot, refers to a single primary tumor 
from an individual patient.  The coloring on the mutation plot shows a gradient: green for unusually high 
SNV/indels, blue for more loss CNAs than gain CNAs, red for more gain CNAs than loss CNAs, and purple 
for CNAs which are equally losses and gains within the sample. 
 



 
 
 
  

 
 

Downloadable Data 
You can download some of the spreadsheets which generate the statistical data using these buttons: 

 
 
The “Results Summary” will download the same information as in the displayed table in a single 
spreadsheet.   
 
Descriptions of the Results Summary header are as follows: 
 
Pathway:  Name of the pathway analyzed by SWAN 
 
Result: “Haploinsufficient” means that statistical significance was reached for the 

hypothesis that this pathway is suppressed by CNA deletions.  “Triploproficient” 
means that statistical significance was reached for the hypothesis that this 



pathway is suppressed by CNA gains.  “No Selection” means that statistical 
significance was not reached for either hypothesis. 

 
Model Avg: This is the average of two scores: 1) The shift of the data from permuted 

background scores, for the “Haploinsufficient” hypothesis, and 2) The shift of the 
data from permuted background scores, for the “Triploproficient” hypothesis.  It 
is a magnitude estimate of the shift from control data, of arbitrary units. 

 
Wilcoxon p: This is a Wilcoxon signed-rank statistical test with a nominal p value.  It tests two 

groups:  the tumor SWAN pathway scores, and the control (in this case, a 
randomly permuted gene background based on the distribution of gene-level 
CNAs in each individual tumor).   

 
More accurately, this p-value is a median p-value from the 10,000x(number of 
samples) control networks calculated for each individual tumor for the whole set 
of tumors in a paired signed-rank test.  Even more accurately, this is the medians 
of medians; groups of 25 control permuted networks were generated, and then 
(10,000 / 25 = 400 medians) were taken.  These extra median steps were taken 
to enable a more reliable, stable p-value, which is less dependent on the number 
of control networks calculated.  

 
q Bonferroni: A Bonferroni multiple-hypothesis-testing correction of the Wilcoxon p value, for 

the number of pathways within the pathway group. 
 
FDR Benjamini Hochberg: A Benjamini Hochberg multiple-hypothesis-testing FDR correction of the 

Wilcoxon p value, for the number of pathways within the pathway group. 
 
Std Dev of Model Score: This shows the standard deviation of the “Model Avg” score between 

tumors in the data set. 
 
Low Gene (1:5): These are the genes within this pathway’s network which contributed to a 

negative (haploinsufficient) scoring of the network, ranked from the lowest score 
to the next four lowest scores.  These genes are meant to be interpreted only for 
pathways marked as “Haploinsufficient” in the statistical call.  

 
Low Gene Score (1:5): These are the scores associated with the Low Genes (1:5), in arbitrary units.  

Negative values show network suppression by deletion events, positive scores 
may be found if there are not enough suppressed genes within the pathway for 
this tumor type. 

 
High Gene (1:5): These are the genes within this pathway’s network which contributed to a 

positive (triploproficient) scoring of the network, ranked from the highest score 
to the next four highest scores.  These genes are meant to be interpreted only for 
pathways marked as “Triploproficient” in the statistical call. 

 
High Gene Score (1:5): These are the scores associated with the High Genes (1:5), in arbitrary units.  

Positive values show network enhancement by gain/amplification events, 



negative scores may be found if there are not enough enhanced genes within the 
pathway for this tumor type. 

 
The button “Pathway Data Per Sample” will download normalized pathway shift (from control) data for 
each tumor in the data set.  The header is the tumor sample name. 
 
The button “Pan-Pathway Interactome Influence Data” will download every gene analyzed for all 
pathways and their cumulative score contribution to all pathways (eg, an oncogene will have a strongly 
positive score, and a tumor suppressor will have a strongly negative score, as they will affect multiple 
biological pathways).   
 
Descriptions of the Interactome header are as follows: 
nodeScores- 
SignificanceCorrected This is the cumulative SWAN score of the indicated gene, summed up for all 

pathways which involve this gene.  The magnitude is further multiplied by the 
log10 value of the FDR q value of the pathway, for all pathways this gene is 
involved in.  These are not corrected for the number of pathways this gene is 
involved in; the interpretation of a high magnitude is that the gene is involved in 
many pathways, and highly suppressing biological changes (if negative) or highly 
enhancing biological changes (if positive). 

 
z_scores_sig  This is the number of standard deviations away from the mean “nodeScores- 

SignificanceCorrected” value. 
 

nodeScoresRaw This is the same as “nodeScoresSignificanceCorrected”, but without any 
correction for the significance of the pathways the gene is involved in. 

 
z_scores_raw This is the number of standard deviations away from the mean “z_scores_raw” 

value. 
 
 
  



Quantitative Table Output 
The last table is a sortable version of the SWAN output information.  You can click the double gray arrows 
to sort by the clicked column, either by ascending or descending.   The header is the same as the “Results 
Summary” header described above. 
 
 

  



Installation 
 
The web application does not require any installation. However, if you routinely use SWAN, we would 
appreciate it if you download the software to help reduce our server costs. 
 
All Shiny Apps, including SWAN, require that you first install to your computer these free programs: 
R   (https://www.r-project.org/) 
RStudio   (https://www.rstudio.com/products/rstudio/download/) 
Choose 64-bit installations if you are unsure. 
 

Pan-pathway SWAN installation 
 
Installation of the Pan-pathway SWAN App enables deeper background permutations which increase the 
pathway suppression or elevation call confidence. 
 

1. Download the SWAN_PanPathway.zip file from GitHub (link). Unzip the folder. 
2. Close all other open applications 
3. Configure RStudio to run this App by installing packages.  These are small files that R uses to 

execute specialized commands, like those in this App.  
4. To do this, open RStudio and enter after the “>” in the lower left-most corner: 

 
install.packages(c("shiny","data.table","dplyr","ggplot2","ggvis"

,"shinyBS","shinyjs","DT")) 

 
It should look like this: 

 
 

5. Press enter to install packages.  It will take some time to install all the packages, click “yes” when 
prompted. Note any red text which appears: this may indicate you need to install additional 
packages or software on your particular computer. 

6. Quit RStudio and restart your computer prior to first use of the Shiny App. 
7. Navigate to the main directory you unzipped the files. You should see two .R files: “ui.R” and 

“server.R”.  Open either of them in RStudio. 
8. Find the green arrow next to “Run App”.  Click the small black arrow adjacent to “App” and click 

“Run External”.  See screenshot below: 

 
9.  You are ready to go!  Click the green arrow once and SWAN will run in your default browser.   

 

R Package SWAN Installation 
For advanced users only. Please download from GitHub.  

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/


License 
 
Copyright © 2020 Joe Delaney 
 
Any usage or distribution of the underlying SWAN package code is subject to GNU General Public License 
V3 (GPLv3) - https://www.gnu.org/licenses/gpl-3.0.en.html 
 
Any usage or distribution of the SWAN Shiny App code is subject to the MUSC License: 
 
Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use 
this software and associated documentation files (the "Software"). 
 
1. The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, 
and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, 
or non-commercial artistic projects. 
 
2. Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in 
a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.  To obtain a license 
for commercial purposes please contact the MUSC Foundation for Research Development at FRD@MUSC.edu. 
 
3. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 
 
4. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer 
in the documentation and/or other materials provided with the distribution. 
 
5. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote works derived 
from this software without specific prior written permission. 
 
6. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED 
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT 
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE 
OR OTHER DEALINGS IN THE SOFTWARE. 
 
7. You understand and agree that the authors are under no obligation to provide either maintenance services, update services, 
notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to 
update, modify, or discontinue the Software at any time. 
 
 
 

https://www.gnu.org/licenses/gpl-3.0.en.html

